5 research outputs found

    Microfluidic devices for cell cultivation and proliferation

    Full text link
    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined

    In-syringe electrokinetic ampholytes focusing coupled with electrospray ionization mass spectrometry

    Full text link
    A 25 Ī¼L analytical glass syringe has been used for isoelectric focusing (IEF) utilizing the stainless-steel needle and plunger as electrodes. The generation of protons and hydroxyl ions at the electrodes facilitated a neutralization reaction boundary (NRB) mechanism to focus different amphoteric compounds, such as hemoglobin, bovine serum albumin, R-phycoerythrin, and histidine, within minutes. After optimization of different experimental parameters affecting the IEF process and the coupling of the IEF syringe with electrospray ionization mass spectrometry (ESI-MS), a BGE composed of NH4Ac, 1.0 mM, pH 4.0, in 70.0% (v/v) acetonitrile was used for the IEF of histidine. A voltage of āˆ’200 V was applied for 5.0 min to accomplish the IEF and increased to -400 V during the infusion to ESI-MS at a flow rate of 4.0 Ī¼L/min. The coaxial sheath liquid consisting of 0.2% (v/v) formic acid was added at 4.0 Ī¼L/min. The detection limit was found to be 2.2 Ī¼g/mL and a nonlinear quadratic fit calibration curve was constructed for histidine over the range of 4.0-64.0 Ī¼g/mL with a correlation coefficient (r) = 0.9998. The determination of histidine in spiked urine samples as relevant for the diagnosis of histidinemia was demonstrated by the IEF syringe-ESI-MS system with accuracy from 88.25% to 102.16% and a relative standard deviation less than 11%

    Automated liquid-liquid extraction of organic compounds from aqueous samples using a multifunction autosampler syringe

    Full text link
    Liquid-liquid extraction is one of the most widely used and simplest sample preparation techniques. However, consumption of large volumes of organic solvent and manual handling are two major drawbacks of this technique. A multifunction autosampler syringe is introduced which permits automated liquid-liquid extraction in an enclosed operating environment, with low consumption of organic solvents. The device described herein features a micromixer function in addition to common autosampler syringe features like accurate and precise aspirating and dispensing. To test the functionality of the micromixer syringe, manual extraction of caffeine from a tea infusion and semi-automated extraction of dichloroethane from water were carried out. Excellent recoveries of caffeine from a tea infusion (89% recovery with 1.3% RSD) and dichloroethane from water (107% recovery with 10% RSD) were obtained. Two automated workflows were tested using the micromixer syringe mounted in a laboratory autosampler. Standalone automated micro liquid-liquid extraction was performed for sample preparation of selected polychlorinated biphenyl (PCB) congeners prior to comprehensive two-dimensional gas chromatography - electron capture detection analysis. Extraction of PCBs using the described approach used substantially less solvent than a validated solid-phase extraction approach whilst delivering equivalent results for samples with high-level PCBs. Finally, fully automated extraction and GC-MS analysis of polynuclear aromatic hydrocarbons (PAHs) from water samples was performed. Mean recoveries of extraction for PCB and PAH analysis were > 70% using 4 min automated liquid-liquid extractions

    Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014ā€“2016)

    No full text
    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of onā€line/inā€line concentration methods in capillaries and microchips, covering the period July 2014ā€“June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to onā€line or inā€line extraction methods that have been used for electrophoresis
    corecore